Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143-0448, USA.
Wellcome/CRC Institute, University of Cambridge, Tennis Court Road, Cambridge CB21QR, UK.
To explore the role of mitochondrial activity in the aging process, we have lowered the activity of the electron transport chain and adenosine 5'-triphosphate (ATP) synthase with RNA interference (RNAi) in Caenorhabditis elegans. These perturbations reduced body size and behavioral rates and extended adult life-span. Restoring messenger RNA to near-normal levels during adulthood did not elevate ATP levels and did not correct any of these phenotypes. Conversely, inhibiting respiratory-chain components during adulthood only did not reset behavioral rates and did not affect life-span. Thus, the developing animal appears to contain a regulatory system that monitors mitochondrial activity early in life and, in response, establishes rates of respiration, behavior, and aging that persist during adulthood.